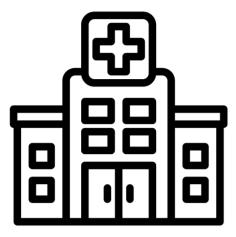
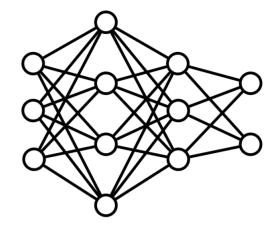
A Causal Framework for Evaluating Deferring Systems

F. Palomba[†] A. Pugnana^{*} J. Alvarez^{*} S. Ruggieri^{*} [†] Princeton University, Princeton, USA ^{*} University of Pisa, Pisa, Italy

Why do we care?



Created by Muh Syafr from Noun Project



Created by Lucas Rathge from Noun Project

Theoretical Framework

Causal inference

- $D_i \in 0, 1$ prescribes treatment
- $O_i(0), O_i(1)$ potential outcomes;

•
$$O_i = (1 - D_i)O_i(0) + O_i(1)D_i$$

• $\tau_i = O_i(1) - O_i(0)$

• Regression Discontinuity Design (RDD)

Deferring systems • ML model $f : \mathcal{X} \to \mathcal{Y}$ • Human expert $h : \mathcal{X} \to \mathcal{Y}$ • Deferring system: $\vartheta(\mathbf{x}) = (f, g, h)(\mathbf{x}) = \Big\{$

• $k: \mathcal{X} \to \mathbb{R}$

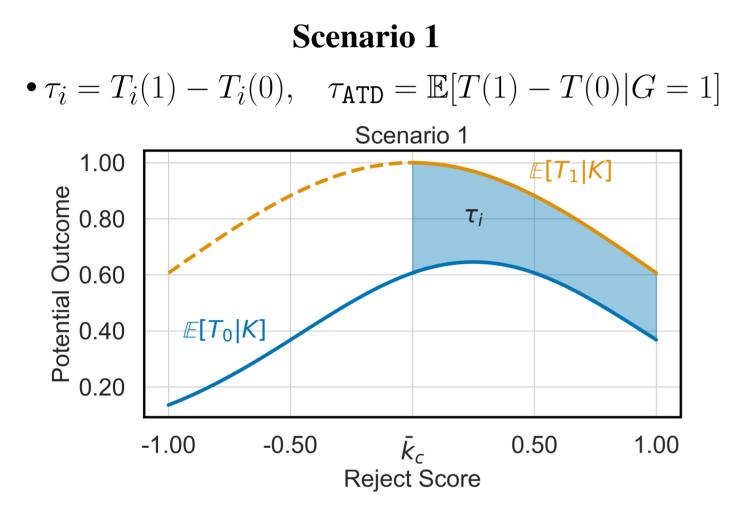
• $g(\mathbf{x}) = \mathbbm{1}\{k(\mathbf{x}) \ge \overline{\kappa}\}$

Bridging the two Worlds

• $G_i = g(\mathbf{X}_i)$ • $T_i(0) = \mathbb{1}\left\{f(\mathbf{X}_i) = Y_i\right\}$ • $T_i(1) = \mathbb{1}\{h(\mathbf{X}_i) = Y_i\}$ • $T_i = (1 - G_i)T_i(0) + T_i(1)G_i$

• $D_i = \mathbb{1}\{V_i \ge v\};$

• You can compare instances close to the cutoff v!



Scenario 2 • $\tau_{RD} = \mathbb{E}[T(1) - T(0) \mid K = \overline{\kappa}_c]$ Scenario 2 1.00 $\mathbb{E}[T_1|K]$ Dotential Ontcome 0.40 0.20 au_{RD} $\mathbb{E}[T_0|K]$ 0.20 -0.50 1.00 -1.00 0.50 \bar{k}_c

Figure 1: Scenario 1: dashed lines are unobserved values and thick lines observed ones. The coloured area represents where the effects can be estimated (i.e., $k(\mathbf{x}) \geq \overline{\kappa}_c$).

Figure 2: Scenario 2: dashed lines are unobserved values and thick lines observed ones. We can estimate τ_{RD} at the cutoff value (i.e., $k(\mathbf{x}) = \overline{\kappa}_c$).

Reject Score

Experimental Evaluation

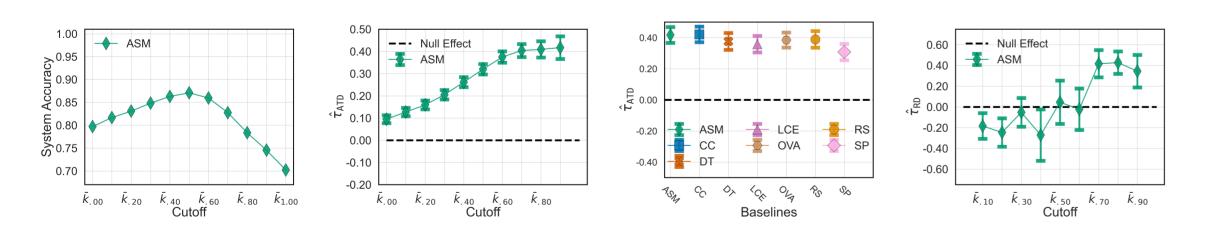
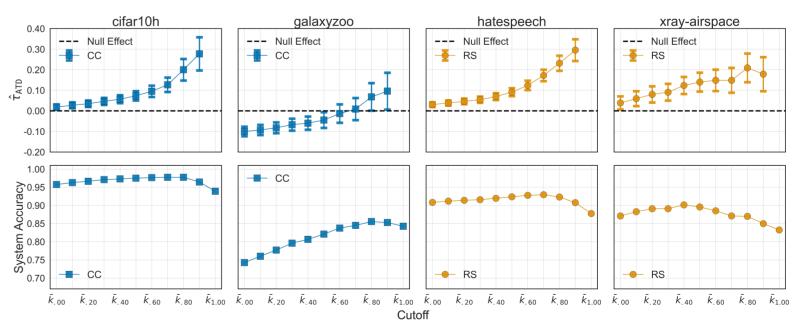


Figure 3: Performance on synthetic data. (a) reports the deferring system accuracy when varying cutoff



 $\overline{\kappa}_c$ for the best baseline Asymmetric SoftMax (ASM) w.r.t. accuracy. (b) reports estimated $\hat{\tau}_{ATD}$ when varying cutoff $\overline{\kappa}_c$ on synthetic data for the best baseline. (c) compares the $\hat{\tau}_{ATD}$ of multiple baselines at a fixed coverage c = .90. (d) reports estimated $\hat{\tau}_{RD}$ when varying cutoff $\overline{\kappa}_c$ for the best baseline.

Figure 4: Best deferring system performances on real data when varying the cutoff $\overline{\kappa}_c$. Top: estimated τ_{ATD} . Bottom: accuracy. CC is Compare Confidence, RS is Realizable Surrogate.

Contacts mail: andrea.pugnana@di.unipi.it, X: @andrepugni

