
Causal Models
Learning, Representation, and Abstraction

Riccardo Massidda — PhD Candidate @ CS Department

Causality

Causal information is fundamental to

represent manipulations of a system.
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Causal Discovery

Learning causal models (a.) is challenging

and generally requires non-observational

data.
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We can address it by restricting the data

generating process (b.).
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Structural Causal Models
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Score-Based Learning

Loh and Bühlmann (2014) prove that the

following score-based approach

arg min
W

‖WX −X‖22 s.t. GM is acyclic,

has as uniqueminimizer the ground truth

model whenever the noise distribution

ℙ𝑬 is homoscedastic.

…and for heteroscedastic noise?

Acyclic Optimization

The space of acyclic graphs is combina-

torial, hence expensive to search.

Differentiable approximations of the

acyclicity constraint require 𝑂(𝑑3) opera-
tions (Zheng et al, 2018). By losing accu-

racy, some methods reduce this to 𝑂(𝑑2)
(Yu et al, 2019; Massidda et al, 2024).

Can we define faster methods?

Can we handle unobserved data?

Low-Level

A concrete SCM represent sensor data,

raw measurements, or high-dimensional

data.

L =

High-Level

An abstract SCM contains summary

statistics, overviews, or low-dimensional

representations.

H =

Causal Abstraction

Causal Abstraction theory enables the

transformation of a low-level SCML into

a high-level SCMH (Beckers et al, 2019).

Graphical and parametrical properties

for linear SCMs are known, and they

can be learned from paired observations

(Massidda et al, 2024).

…and for non-linear SCMs?

Can we handle unsupervised data?
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