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INTRODUCTION

Mobility data (MD) are everywhere. Smartphones and connected cars, as well as tracking devices with GPS capabilities, produce
enormous amounts of spatiotemporal data. The most similar field in the literature is time series (TS), which involves streams of
observations over a finite period. TS research is more extensively explored, particularly in classification tasks, where a wide
variety of methods exist [1].

Comparing TS with mobility literature, we can observe that the former tends to focus more on report-style publications,
emphasizing the results of the analysis rather than the methodologies employed.

Another key challenge in MD analysis is achieving geographic transferability of models. A model trained on data from one region
may perform poorly when applied to another due to differences in the road network patterns or population behavior.

During my PhD, I'm focusing on developing fast, reusable, and effective trajectory representations suitable for multiple
machine learning tasks, with an emphasis on geographic transferability and interpretability.

METHODOLOGIES
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ON GEOGRAPHIC TRANSFERABILITY CONCLUSIONS

Transfer a Local Models Ensemble of Local Models To sum up, we proposed TIF based on a survey of MD analysis, which served as one
of the baselines for my work. Then, we introduced Geolet, the first shapelet-based

Framework: Ensemble of Local models: ; ] ) . ] ] . S
S method for raw Trajectories, and began investigating its capabilities and limitations.
1. Source domain identification 1. Most similar city transfer,
o | We plan to integrate the developed trajectory transformations with other methods
2. Source-target domain linking 2. Weighted model ensemble i , ) ] ) .
we are collaborating on [6], creating interpretable pipelines for Mobility Data
' ini 3. Weighted data samplin .
3. Target Domain refining g pling Analytlcs.
Citv A . Citv B Takeaway messages: Additionally, we plan to integrate deep learning techniques, for example generative
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Transfer Dataset 1. The transfer is better between similar cities models, to produce the discriminative sub-trajectories used by Geolet in the
A>B i
2. Accuracy(A—>B) != Accuracy(B—>A) transformation.
Destination Dataset (predict)
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Table 1: Fl-score deltas of geographically transferred models. Negative values indicate that the model trained and tested on
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