Giovanni Buzzega
Department of Computer Science
University of Pisa
Pisa, Italy

Indexing of Maximal Common Subsequences
and their application

Maximal Common Subsequences (MCSs) are common Can we build a compact deterministic index for all MCSs?
subsequences (CSs) that are not subsequence of any other = Node-labeled Direct Acyclic Graph
common subseguence. ®/§3\@ ® > At most 1 out-neighbor per symbol
X: #BTEAGTCZES @/ 2,1\&) o6 /9,7 > Able to reconstruct MCS positions
Z € MCS(X,Y) & VW € CS(X,Y), Z ¢ W . \\ e 00 @, 52/ @) —@© > Efficient fo construct in practice
Yo #TTHEEGS 1,3\@ 74 785 = With query support
We can substitfute (X, Y) with any collection of k strings. 3.4

Why?

Why MCSs?

The length distribution of MCSs seems fto correlate well with
sequence relatedness:

Why indexinge

Such an index allows to efficiently retrieve any interesting MCS
without resorting to full enumeration.

- agtag o fimite s fishmite FInding ’rhg longest .p.qth iIs linear in a DAG, so we can retrieve LCSs.
2 3*&1.‘ a hz;: vssfhi.sh—lmito The associated position of each symbol could be used as the base
; Bl S myv 1V— . .
% 900 {‘” ‘o hiv—1 vs hiv—1 of a Multiple Sequence Alignment.
= i Ao amaon vs Tisb-onio There are many other MCSs ’rho.’r are not.of maximum length that
;%6100 7 \‘!" can provide equally good alignment information.
f‘ - Complexity gains2:
1000 1500 2000 2500 Finding one LCS over k strings is NP-hard. (Mayer, 1978)11]
MCS length

No LCS over 2 strings can be found in strongly subquadratic
time.[2°]

Generating one MCS over k strings is efficient:

O(kn log n) (Hirota and Sakai, 2023)]
Can we use a long-enough MCSs to approximate the useful
features of an LCS over k stringse

It can be used o define a distance on strings and, when extended
to k strings, it can provide a new string clustering method.

All Longest Common Subsequence (LCS) are also maximal, as by
definition they cannot be extended with any character.

Previous solutions

(Hirota and Sakai, arXiv 2023):M! MCSs can be exponential, even for the case of two strings.

"o = Non-deterministic e.g.. X: A GGA GGA GGA.. Y: A GA GA GA GA..
<> 3) +i
3 a O(n’) fime and space These are polynomial-sized indices, which are
.. (€ i A@S ¢ crucial for efficient storage and retrieval.
. (Conte et al., 2023):1] c o $ But:
- > deterministic O SmP0@2©>%) Both solutions are built for 2 strings
7 s > O(n*|X| logn) time . / Both strive to build the index in one go, which
5 s > O(n?|X|) space A () G O& makes the algorithmic choices hard to grasp

Our simplified approach: McDag!”!

\ How?

Start from the end of the strings

For each match find the rightmost occurrences of each
symbol and add the corresponding node as in-neighbor
> at most 1 in-neighbor per symbol

. o °))) . /
1) Build an approximate rightmost co-deterministic MCS index

= containing all MCSs and some non-maximal CSs
2) Filter-out all paths that correspond to non-maximal CSs —

—

Generalizing to k strings is easy: each match is a k-ple of positions

\

Performances

/ = co-deterministic 01234567890
le7 @
_ . . #CTCTATTAGS
°1 - - MCS-vmzeD Always 4-7% larger than the minimum-size In the resulting index, each non-maximal \ 5’1(\
6 N deterministic MCS index, for 2 strings CSs has one MCS that contains it in o . f 1 012
subsequence-bubble. ' ‘ ,
S 4 10'° | - @ - MCS-MINIMIZED _—— | 9 #GAACTTAATAAS "
o [0F | —A— McDaG @ 0123456789012
2 - J".‘ — - /@ 9,1
Lo o 1074 T 18 © 26 TO—@ We can remove all subsequence-
R i | o /14> b9 510\ bubbles via a determinization &
0 3000 6000 9000 - @\2,5/@)% (AH)—~(%) filtering step
. 0.0 46 5,8 8,11 10,12
For k>4 strings the frend seems to become ’ \g\@)_@% i
exponential even for the minimal index 0 25 50 75 100 125 B i _Sos % |
53 : a(:)_>
Open questions Caveats: s @\
Determinization can be exponential 0,0 T 8,11 10,12
Can we extend the concept of MCS over automata languages? unless the starfing automaton has low width @\/gw

Can we build an approximation of the histogram of MCS lengths?

References

[1] Maier, D. The complexity of some problems on subsequences and supersequences. Journal of the ACM (JACM) 25, 2 (1978), 322-336.
[2] Abboud, A., Backurs, A., and Williams, V. V. Tight hardness results for Ilcs and other sequence similarity measures. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (2015), IEEE, pp. 59-78.

[3] Bringmann, K., and Kbnnemann, M. Quadratic conditional lower bounds for string problems and dynamic time warping. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (2015), IEEE, pp. 79-97.

[4] Hirota, M., and Sakai, Y. A fast algorithm for finding a maximal common subsequence of multiple strings. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 106, 9 (2023), 1191-1194
[5] Hirota, M., and Sakai, Y. Efficient algorithms for enumerating maximal common subsequences of two strings. arXiv preprint arXiv:2307.10552 (2023).
[6] Conte, A., Grossi, R., Punzi, G., and Uno, T. A compact dag for storing and searching maximal common subsequences. In 34th International Symposium on Algorithms and Computation (2023).
[7] Buzzega, G., Conte, A., Grossi, R., and Punzi, G. Mcdag: Indexing maximal common subsequences in practice. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024) (2024), Schloss Dagstuhl-Leibniz-Zentrum f0r Informatik.

One match can correspond to multiple nodes

PhD Spotlight - 11th of November 2024 - Pisa

