
MCSs can be exponential, even for the case of two strings.
e.g.: X: A GGA GGA GGA… Y: A GA GA GA GA…

In the resulting index, each non-maximal
CSs has one MCS that contains it in a

subsequence-bubble.

Why MCSs?
The length distribution of MCSs seems to correlate well with
sequence relatedness:

It can be used to define a distance on strings and, when extended
to k strings, it can provide a new string clustering method.
All Longest Common Subsequence (LCS) are also maximal, as by
definition they cannot be extended with any character.

Why indexing?
Such an index allows to efficiently retrieve any interesting MCS
without resorting to full enumeration.
Finding the longest path is linear in a DAG, so we can retrieve LCSs.
The associated position of each symbol could be used as the base
of a Multiple Sequence Alignment.
There are many other MCSs that are not of maximum length that

can provide equally good alignment information.

Complexity gains?:
Finding one LCS over k strings is NP-hard. (Mayer, 1978)[1]

No LCS over 2 strings can be found in strongly subquadratic
time.[2,3]

Generating one MCS over k strings is efficient:
O(kn log n) (Hirota and Sakai, 2023)[4]

Can we use a long-enough MCSs to approximate the useful
features of an LCS over k strings?

Definition

Indexing of Maximal Common Subsequences
and their application

Giovanni Buzzega
Department of Computer Science

University of Pisa
Pisa, Italy

Maximal Common Subsequences (MCSs) are common
subsequences (CSs) that are not subsequence of any other
common subsequence.

We can substitute with any collection of k strings.

Why?

Our simplified approach: McDag[7]

1) Build an approximate rightmost co-deterministic MCS index
↪ containing all MCSs and some non-maximal CSs

2) Filter-out all paths that correspond to non-maximal CSs
Generalizing to k strings is easy: each match is a k-ple of positions

References

PhD Spotlight - 11th of November 2024 - Pisa

Can we build a compact deterministic index for all MCSs?
↪ Node-labeled Direct Acyclic Graph
↪ At most 1 out-neighbor per symbol
↪ Able to reconstruct MCS positions
↪ Efficient to construct in practice
↪ With query support

Previous solutions

[1] Maier, D. The complexity of some problems on subsequences and supersequences. Journal of the ACM (JACM) 25, 2 (1978), 322–336.
[2] Abboud, A., Backurs, A., and Williams, V. V. Tight hardness results for lcs and other sequence similarity measures. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (2015), IEEE, pp. 59–78.
[3] Bringmann, K., and Künnemann, M. Quadratic conditional lower bounds for string problems and dynamic time warping. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (2015), IEEE, pp. 79–97.
[4] Hirota, M., and Sakai, Y. A fast algorithm for finding a maximal common subsequence of multiple strings. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 106, 9 (2023), 1191–1194
[5] Hirota, M., and Sakai, Y. Efficient algorithms for enumerating maximal common subsequences of two strings. arXiv preprint arXiv:2307.10552 (2023).
[6] Conte, A., Grossi, R., Punzi, G., and Uno, T. A compact dag for storing and searching maximal common subsequences. In 34th International Symposium on Algorithms and Computation (2023).
[7] Buzzega, G., Conte, A., Grossi, R., and Punzi, G. Mcdag: Indexing maximal common subsequences in practice. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024) (2024), Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

(Hirota and Sakai, arXiv 2023):[5]

↪ Non-deterministic
↪ O(n3) time and space

X: #ATZGTCZC$

Y: #TTAZCG$

Goal

(Conte et al., 2023):[6]

↪ deterministic
↪ O(n3|Σ| log n) time
↪ O(n3|Σ|) space

These are polynomial-sized indices, which are
crucial for efficient storage and retrieval.
But:
Both solutions are built for 2 strings
Both strive to build the index in one go, which
makes the algorithmic choices hard to grasp

Open questions

How?
Start from the end of the strings
For each match find the rightmost occurrences of each

symbol and add the corresponding node as in-neighbor
↪ at most 1 in-neighbor per symbol
↪ co-deterministic 01234567890

#CTCTATTAG$

#GAACTTAATAA$
0123456789012

…

We can remove all subsequence-
bubbles via a determinization &
filtering step

Performances

Caveats:
Determinization can be exponential

unless the starting automaton has low width
One match can correspond to multiple nodes

Always 4-7% larger than the minimum-size
deterministic MCS index, for 2 strings

For k>4 strings the trend seems to become
exponential even for the minimal index

Can we extend the concept of MCS over automata languages?
Can we build an approximation of the histogram of MCS lengths?

