
MCSs can be exponential, even for the case of two strings.
e.g.: X: A GGA GGA GGA… Y: A GA GA GA GA…

In the resulting index, each non-maximal
CSs has one MCS that contains it in a

subsequence-bubble.

Why MCSs?
The length distribution of MCSs seems to correlate well with 
sequence relatedness:

It can be used to define a distance on strings and, when extended 
to k strings, it can provide a new string clustering method.
All Longest Common Subsequence (LCS) are also maximal, as by 
definition they cannot be extended with any character. 

Why indexing?
Such an index allows to efficiently retrieve any interesting MCS 
without resorting to full enumeration.
Finding the longest path is linear in a DAG, so we can retrieve LCSs.
The associated position of each symbol could be used as the base 
of a Multiple Sequence Alignment.
There are many other MCSs that are not of maximum length that

can provide equally good alignment information.

Complexity gains?:
Finding one LCS over k strings is NP-hard. (Mayer, 1978)[1]

No LCS over 2 strings can be found in strongly subquadratic 
time.[2,3]

Generating one MCS over k strings is efficient:
O(kn log n) (Hirota and Sakai, 2023)[4]

Can we use a long-enough MCSs to approximate the useful
features of an LCS over k strings?
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Maximal Common Subsequences (MCSs) are common 
subsequences (CSs) that are not subsequence of any other 
common subsequence.

We can substitute           with any collection of k strings.

Why?

Our simplified approach: McDag[7]

1) Build an approximate rightmost co-deterministic MCS index
↪ containing all MCSs and some non-maximal CSs

2) Filter-out all paths that correspond to non-maximal CSs
Generalizing to k strings is easy: each match is a k-ple of positions
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(Hirota and Sakai, arXiv 2023):[5]

↪ Non-deterministic
↪ O(n3) time and space

X: #ATZGTCZC$

Y: #TTAZCG$

Goal

(Conte et al., 2023):[6]

↪ deterministic
↪ O(n3|Σ| log n) time
↪ O(n3|Σ|) space

These are polynomial-sized indices, which are 
crucial for efficient storage and retrieval.
But:
Both solutions are built for 2 strings
Both strive to build the index in one go, which 
makes the algorithmic choices hard to grasp

Open questions

How?
Start from the end of the strings
For each match find the rightmost occurrences of each

symbol and add the corresponding node as in-neighbor
↪ at most 1 in-neighbor per symbol
↪ co-deterministic 01234567890

#CTCTATTAG$

#GAACTTAATAA$
0123456789012

…

We can remove all subsequence- 
bubbles via a determinization & 
filtering step

Performances

Caveats:
Determinization can be exponential

unless the starting automaton has low width
One match can correspond to multiple nodes

Always 4-7% larger than the minimum-size 
deterministic MCS index, for 2 strings

For k>4 strings the trend seems to become 
exponential even for the minimal index

Can we extend the concept of MCS over automata languages?
Can we build an approximation of the histogram of MCS lengths?


