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Indexing of Maximal Common Subsequences
and their application

Maximal Common Subsequences (MCSs) are common Can we build a compact deterministic index for all MCSs?
subsequences (CSs) that are not subsequence of any other = Node-labeled Direct Acyclic Graph
common subseguence. ®/§3\@ ® > At most 1 out-neighbor per symbol
X: #BTEAGTCZES @/ 2,1\&) o6 /9,7 > Able to reconstruct MCS positions
Z € MCS(X,Y) & VW € CS(X,Y), Z ¢ W . \\ e 00 @, 52/ @) —@© > Efficient fo construct in practice
Yo #TTHEEGS 1,3\@ 74 785 = With query support
We can substitfute (X, Y) with any collection of k strings. 3.4

Why?

Why MCSs?

The length distribution of MCSs seems fto correlate well with
sequence relatedness:

Why indexinge

Such an index allows to efficiently retrieve any interesting MCS
without resorting to full enumeration.

- agtag o fimite s fishmite FInding ’rhg longest .p.qth iIs linear in a DAG, so we can retrieve LCSs.
2 3*&1.‘ a hz;: vssfhi.sh—lmito The associated position of each symbol could be used as the base
; Bl S myv 1V— . .
% 900 {‘” ‘o hiv—1 vs hiv—1 of a Multiple Sequence Alignment.
= i Ao amaon vs Tisb-onio There are many other MCSs ’rho.’r are not.of maximum length that
;%6100 7 \‘!" can provide equally good alignment information.
f‘ - Complexity gains2:
1000 1500 2000 2500 Finding one LCS over k strings is NP-hard. (Mayer, 1978)11]
MCS length

No LCS over 2 strings can be found in strongly subquadratic
time.[2°]

Generating one MCS over k strings is efficient:

O(kn log n) (Hirota and Sakai, 2023) ]
Can we use a long-enough MCSs to approximate the useful
features of an LCS over k stringse

It can be used o define a distance on strings and, when extended
to k strings, it can provide a new string clustering method.

All Longest Common Subsequence (LCS) are also maximal, as by
definition they cannot be extended with any character.

Previous solutions

(Hirota and Sakai, arXiv 2023):M! MCSs can be exponential, even for the case of two strings.

"o = Non-deterministic e.g.. X: A GGA GGA GGA.. Y: A GA GA GA GA..
<> 3) +i
3 a O(n’) fime and space These are polynomial-sized indices, which are
.. (€ i A@S ¢ crucial for efficient storage and retrieval.
. (Conte et al., 2023):1] c o $ But:
- > deterministic O SmP0@2©>%)  Both solutions are built for 2 strings
7 s > O(n*|X| logn) time . / Both strive to build the index in one go, which
5 s > O(n?|X|) space A () G O& makes the algorithmic choices hard to grasp

Our simplified approach: McDag!”!

\ How?

Start from the end of the strings

For each match find the rightmost occurrences of each
symbol and add the corresponding node as in-neighbor
> at most 1 in-neighbor per symbol

. o ° ) ) ) . /
1) Build an approximate rightmost co-deterministic MCS index

= containing all MCSs and some non-maximal CSs
2) Filter-out all paths that correspond to non-maximal CSs —

—

Generalizing to k strings is easy: each match is a k-ple of positions

\

Performances
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For k>4 strings the frend seems to become ’ \g\@)_@% i
exponential even for the minimal index 0 25 50 75 100 125 B i _Sos % |
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Open questions Caveats: s @\
Determinization can be exponential 0,0 T 8,11 10,12
Can we extend the concept of MCS over automata languages? unless the starfing automaton has low width @\/gw

Can we build an approximation of the histogram of MCS lengths?
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One match can correspond to multiple nodes
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